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What Is AGT?

• It is Not about developing computer games :(

• It is the formal study of interactions of different entities in strategic settings.

• Success of a player may not only depend on their own action, but also the 
action of other players.

People, Companies, Countries, Computers...

Players
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Why do we care about Game Theory?

Two way interaction:

1. To use techniques from game theory to model and study certain aspects 
of computing

2. Contribute to game theory by offering an algorithmic perspective.

(theoryCS)



Course Goal 1: Designing systems with 
strategic participants.
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D
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D*

B

Denmark

China

China2 S.K.

Indonesia S.K.2

Playing for losing!
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What went wrong?
• In systems with strategic participants, the rules matter.

• Poorly designed systems suffer from unexpected and undesirable results.

• The burden lies on the system designer to anticipate strategic behaviour, not 
on the participants to behave against their own interests.  

  What's wrong with the people?                      What's wrong with the system?
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The Science of Rule Making
Mechanism Design: Design rules so that strategic behaviour by the participants 
leads to desirable outcomes. 

Applications: 
• Internet search auctions

• Wireless spectrum auctions

• Matching medical residents to hospitals

• Matching children to schools

• Kidney exchange markets



Course Goal 2: When is selfish behaviour 
essentially benign?
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The Price of Anarchy
When Is Selfish Behaviour Near-Optimal?

• The game is given - the rules are made already

• Internet, road network etc... (that are already built)

• What is the cost of selfish behaviour in this game?

• (Compared to optimal)
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c(x) = x

c(x) = 1

c(x) = 1

c(x) = 0

• If there was a benevolent dictator, she could ask 
everyone to take the previous routs, ignoring the 
teleportation machine. Then travel time: 90 mins

Price of Anarchy (POA):  The ratio between the system performance with 
strategic players and the best possible system performance

POA =
120
90

=
4
3



No Netflix Please...

Suppose  people on a hotel in a remote 
location share a single internet connection.

Problem: Capacity of this communication 
channel is limited. 

Sending email is okay. Streaming movies breaks 
the internet for everyone. 

n
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Model

• Total number of agents sharing the channel : n

• Quality of the channel deteriorates linearly with increasing amount of traffic.

• If total traffic is , the quality is t ≤ 1 1 − t

• If total traffic is , the quality is t > 1 0

• Each agent  can choose , and she gets (Quality of channel)i ∈ [n] xi ∈ [0,1] xi ⋅

• Payoff  pi = xi ⋅ 1 − ∑
j∈[n]

xj

Payoff



What will happen?

Agents are rational and selfish. Each agent wants to maximize their payoff



Analysis 

Let 

If , agent  gets payoff 

If , agent  will get a payoff of 

Therefore, payoff is maximized at  

ti = ∑
j≠i

xj

ti ≥ 1 i 0

ti < 1 i xi ⋅ 1 − ∑
j∈[n]

xj = xi ⋅ (1 − ti − xi)

xi =
1 − ti

2
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Stability/Equilibrium 

Question: Can each agent pick a number in such a way that no agent would 
want to revise their choice? 

Answer: Yes, there exists a unique stable solution  such 

that 

X* = ⟨x*1 , x*2 , …, x*n ⟩

x*i =
1

n + 1
∀i ∈ [n]



Proof
In an equilibrium, each agent gets maximum payoff. Therefore, 

We know that  , therefore, 

Substitute  in , we get 

Now, solving for  in  with , gives     

∀i ∈ [n], xi =
1 − ti

2
(1)

⟹ ti = 2xi − 1
⟹ ti − tj = 2xi − 1 − 2xj + 1 = 2(xi − xj) (2)

ti = ∑
j≠i

xj ti − tj = xj − xi (3)

(3) (2) ∀i ∈ [n], xi = xj (4)

xi (1) ti = (n − 1)xi xi =
1

n + 1
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Why is it a Tragedy? 

In the stable solution, 

    the payoff of each player  is   i pi =
1

n + 1
⋅ (1 −

n
n + 1 ) =

1
(n + 1)2

However, had they chosen , then ∀i ∈ [n], xi =
1
2n

pi =
1
4n

Price of Anarchy (POA) =
4n

(n + 1)2

Optimal
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Tragedy of the Commons: Why does this happen?

•  The action of a player brings large benefits to the player itself. But also, brings 
a cost to everybody. 

• The benefit only goes to the acting player. But the cost is shared by many 
players. 

• The large benefit to the player outweighs the share of the additional cost that 
the player incurs. 

• But the total cost introduced to the system outweighs the total benefit
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Examples

Pollution Over Fishing Antibiotic Overuse

Fast Fashion Evolutionary Extinction Over Population



Course Goal 3: Complexity of Equilibria



Equilibria

• Informally, an equilibrium is a “steady state” of a system where each 
participant, assuming everything else stays the same, want to remain as-is.

• Computing Equilibria:

• Easy in some games - Eg: using the teleport

• Not so easy always (As we will see later)
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Rock-Paper-Scissors
Nash’s Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

• Nash’s theorem holds more generally in games with any finite number of 
players.

•  If a bimatrix game is zero-sum (like in Rock-Paper-Scissors) then a Nash 
equilibrium can be computed in polynomial time.

• Using linear programming 

• General games - Computing Nash Equilibrium is PPAD-Hard  (not NP -hard 
(unless NP = coNP ))

• 2NASH is NP-Complete



Computing Equilibrium
• Nash equilibria is a fundamental computational problem of “intermediate” 

difficulty. 

• Like Graph Isomorphism, Factoring...

• If all parties are boundedly rational, then an equilibrium can be interpreted as 
a credible prediction only if it can be computed with reasonable effort.

• "Easier" equilibrium concepts: correlated equilibria and coarse correlated 
equilibria



Exercise 1

• Prove that RPS has unique Nash Equilibria.


