Algorithmic Game Theory Reading Group

Date:

• It is Not about developing computer games :(

- It is Not about developing computer games :(
- It is the formal study of interactions of different <u>entities</u> in strategic settings.

- It is Not about developing computer games :(
- It is the formal study of interactions of different <u>entities</u> in strategic settings.

People, Companies, Countries, Computers...

- It is Not about developing computer games :(
- It is the formal study of interactions of different <u>entities</u> in strategic settings.

People, Companies, Countries, Computers...

Players

• It is Not about developing computer games :(

People, Companies, Countries, Computers...

• It is the formal study of interactions of different <u>entities</u> in strategic settings.

Players

• It is Not about developing computer games :(

action of other players.

- It is the formal study of interactions of different <u>entities</u> in strategic settings.

People, Companies, Countries, Computers...

Players

• Success of a player may not only depend on their own action, but also the

Two way interaction:

Two way interaction:

1. To use techniques from game theory to model and study certain aspects of computing

Two way interaction:

- of computing

1. To use techniques from game theory to model and study certain aspects

2. Contribute to game theory by offering an algorithmic perspective.

Course Goal 1: Designing systems with strategic participants.

Playing for losing!

• In systems with strategic participants, the rules matter.

- In systems with strategic participants, the rules matter.
- Poorly designed systems suffer from unexpected and undesirable results.

- In systems with strategic participants, the rules matter.
- Poorly designed systems suffer from unexpected and undesirable results.
- The burden lies on the system designer to anticipate strategic behaviour, not on the participants to behave against their own interests.

- In systems with strategic participants, the rules matter.
- Poorly designed systems suffer from unexpected and undesirable results.
- The burden lies on the system designer to anticipate strategic behaviour, not on the participants to behave against their own interests.

What's wrong with the people?

- In systems with strategic participants, the rules matter.
- Poorly designed systems suffer from unexpected and undesirable results.
- The burden lies on the system designer to anticipate strategic behaviour, not on the participants to behave against their own interests.

- In systems with strategic participants, the rules matter.
- Poorly designed systems suffer from unexpected and undesirable results.
- The burden lies on the system designer to anticipate strategic behaviour, not on the participants to behave against their own interests.

What's wrong with the system?

Mechanism Design: Design rules so that strategic behaviour by the participants leads to desirable outcomes.

Mechanism Design: Design rules so that strategic behaviour by the participants leads to desirable outcomes.

Applications:

Mechanism Design: Design rules so that strategic behaviour by the participants leads to desirable outcomes.

Applications:

• Internet search auctions
Mechanism Design: Design rules so that strategic behaviour by the participants leads to desirable outcomes.

- Internet search auctions
- Wireless spectrum auctions

Mechanism Design: Design rules so that strategic behaviour by the participants leads to desirable outcomes.

- Internet search auctions
- Wireless spectrum auctions
- Matching medical residents to hospitals

Mechanism Design: Design rules so that strategic behaviour by the participants leads to desirable outcomes.

- Internet search auctions
- Wireless spectrum auctions
- Matching medical residents to hospitals
- Matching children to schools

Mechanism Design: Design rules so that strategic behaviour by the participants leads to desirable outcomes.

- Internet search auctions
- Wireless spectrum auctions
- Matching medical residents to hospitals
- Matching children to schools
- Kidney exchange markets

Course Goal 2: When is selfish behaviour essentially benign?

• The game is given - the rules are made already

- The game is given the rules are made already
 - Internet, road network etc... (that are already built)

- The game is given the rules are made already
 - Internet, road network etc... (that are already built)
- What is the cost of selfish behaviour in this game?

- The game is given the rules are made already
 - Internet, road network etc... (that are already built)
- What is the cost of selfish behaviour in this game?
 - (Compared to optimal)

Identical paths, combined travel time: 1 + x each

Identical paths, combined travel time: 1 + x each Therefore, time taken: 90 mins

Since 2x < 1 + x, the route $s \rightarrow v \rightarrow w \rightarrow t$ is always better.

Since 2x < 1 + x, the route $s \rightarrow v \rightarrow w \rightarrow t$ is always better. Therefore, time taken: 120 mins

Braess's Paradox

• If there was a benevolent dictator, she could ask everyone to take the previous routs, ignoring the teleportation machine. Then travel time: 90 mins

• If there was a benevolent dictator, she could ask everyone to take the previous routs, ignoring the teleportation machine. Then travel time: 90 mins

Price of Anarchy (POA): The ratio between the system performance with strategic players and the best possible system performance

• If there was a benevolent dictator, she could ask everyone to take the previous routs, ignoring the teleportation machine. Then travel time: 90 mins

Price of Anarchy (POA): The ratio between the system performance with strategic players and the best possible system performance

$$POA = \frac{120}{90} = \frac{4}{3}$$

No Netflix Please...

Suppose *n* people on a hotel in a remote location share a single internet connection.

Problem: Capacity of this communication channel is limited.

Sending email is okay. Streaming movies breaks the internet for everyone.

• Total number of agents sharing the channel : *n*

Mode

- Total number of agents sharing the channel : *n*
- Quality of the channel deteriorates linearly with increasing amount of traffic.

- Total number of agents sharing the channel : *n*
- Quality of the channel deteriorates linearly with increasing amount of traffic.
 - If total traffic is $t \le 1$, the quality is 1 t

- Total number of agents sharing the channel : *n*
- Quality of the channel deteriorates linearly with increasing amount of traffic.
 - If total traffic is $t \le 1$, the quality is 1 t
 - If total traffic is t > 1, the quality is 0

- Total number of agents sharing the channel : *n*
- Quality of the channel deteriorates linearly with increasing amount of traffic.
 - If total traffic is $t \le 1$, the quality is 1 t
 - If total traffic is t > 1, the quality is 0
- Each agent $i \in [n]$ can choose $x_i \in [0,1]$, and she gets $x_i \cdot (\text{Quality of channel})$

- Total number of agents sharing the channel : *n*
- Quality of the channel deteriorates linearly with increasing amount of traffic.
 - If total traffic is $t \le 1$, the quality is 1 t
 - If total traffic is t > 1, the quality is 0
- Each agent $i \in [n]$ can choose $x_i \in [0,1]$, and she gets $x_i \cdot (\text{Quality of channel})$

- Total number of agents sharing the channel : *n*
- Quality of the channel deteriorates linearly with increasing amount of traffic.
 - Payoff
 - If total traffic is $t \le 1$, the quality is 1 t• If total traffic is t > 1, the quality is 0
- Each agent $i \in [n]$ can choose $x_i \in [0,1]$, and she gets $x_i \cdot (\text{Quality of channel})$

- Total number of agents sharing the channel : *n*
- Quality of the channel deteriorates linearly with increasing amount of traffic.
 - Payoff
 - If total traffic is $t \le 1$, the quality is 1 t• If total traffic is t > 1, the quality is 0
- Each agent $i \in [n]$ can choose $x_i \in [0,1]$, and she gets $x_i \cdot (\text{Quality of channel})$

• Payoff
$$p_i = x_i \cdot \left(1 - \sum_{j \in [n]} x_j\right)$$

What will happen?

Agents are *rational* and *selfish*. Each agent wants to maximize their payoff

Let
$$t_i = \sum_{j \neq i} x_j$$

If $t_i \ge 1$, agent *i* gets payoff 0
If $t_i < 1$, agent *i* will get a payo

Therefore, payoff is maximized at $x_i = \frac{1 - t_i}{2}$

Analysis

Stability/Equilibrium

Stability/Equilibrium

Question: Can each agent pick a nur want to revise their choice?

Question: Can each agent pick a number in such a way that no agent would

Stability/Equilibrium

Question: Can each agent pick a nur want to revise their choice?

Answer: Yes, there exists a unique state that $x_i^* = \frac{1}{n+1} \forall i \in [n]$

Question: Can each agent pick a number in such a way that no agent would

Answer: Yes, there exists a unique stable solution $X^* = \langle x_1^*, x_2^*, ..., x_n^* \rangle$ such

In an equilibrium, each agent gets maximum payoff. Therefore, $\forall i \in [n], \quad x_i = \frac{1 - t_i}{2} \quad (1)$ $\implies t_i = 2x_i - 1$ $\implies t_i - t_j = 2x_i - 1 - 2x_j + 1 =$ We know that $t_i = \sum x_j$, therefore j≠i

Substitute (3) in (2), we get $\forall i \in$ Now, solving for x_i in (1) with t_i

Proof

$$= 2(x_{i} - x_{j}) \quad (2)$$

ore, $t_{i} - t_{j} = x_{j} - x_{i} \quad (3)$
$$\equiv [n], \quad x_{i} = x_{j} \quad (4)$$

$$= (n - 1)x_{i}, \text{ gives } \quad x_{i} = \frac{1}{n + 1}$$

In the stable solution,

In the stable solution,

In the stable solution,

the payoff of each player *i* is $p_i = -$

However, had they chosen $\forall i \in [n]$,

$$\frac{1}{n+1} \cdot \left(1 - \frac{n}{n+1}\right) = \frac{1}{(n+1)^2}$$
$$x_i = \frac{1}{2n'}, \text{ then } p_i = \frac{1}{4n}$$

In the stable solution,

In the stable solution,

Price of Anarchy (POA) = $\frac{4n}{(n+1)^2}$

a cost to everybody.

• The action of a player brings large benefits to the player itself. But also, brings

- a cost to everybody.
- The benefit only goes to the acting player. But the cost is shared by many players.

• The action of a player brings large benefits to the player itself. But also, brings

- a cost to everybody.
- The benefit only goes to the acting player. But the cost is shared by many players.
- the player incurs.

• The action of a player brings large benefits to the player itself. But also, brings

• The large benefit to the player outweighs the share of the additional cost that

- a cost to everybody.
- The benefit only goes to the acting player. But the cost is shared by many players.
- the player incurs.
- But the total cost introduced to the system outweighs the total benefit

• The action of a player brings large benefits to the player itself. But also, brings

• The large benefit to the player outweighs the share of the additional cost that

Pollution

Pollution

Over Fishing

Pollution

Over Fishing

Antibiotic Overuse

Pollution

Fast Fashion

Examples

Over Fishing

Antibiotic Overuse

Pollution

Fast Fashion

Evolutionary Extinction

Examples

Antibiotic Overuse

Pollution

Fast Fashion

Evolutionary Extinction

Examples

Antibiotic Overuse

Over Population

Course Goal 3: Complexity of Equilibria

Equilibria

- Informally, an equilibrium is a "steady state" of a system where each participant, assuming everything else stays the same, want to remain as-is.
- Computing Equilibria:
 - Easy in some games Eg: using the teleport
 - Not so easy always (As we will see later)

	Rock	Paper	Scissors
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

	Rock	Paper	Scissors
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

	Rock	Paper	Scissors
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

No "deterministic equilibrium"

	Rock	Paper	Scissors
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

	Rock	Paper	Scisso
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

	Rock	Paper	Scisso
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

• Idea (by von Neumann) is to allow randomized (a.k.a. mixed) strategies.

- unilateral deviation yields zero expected payoff to the deviator.

	Rock	Paper	Scisso
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

• Idea (by von Neumann) is to allow randomized (a.k.a. mixed) strategies.

• If both players randomize uniformly in Rock-Paper-Scissors, then neither player can increase their expected payoff via a unilateral deviation. every

- unilateral deviation yields zero expected payoff to the deviator.
- Nash equilibrium.

	Rock	Paper	Scisso
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

• Idea (by von Neumann) is to allow randomized (a.k.a. mixed) strategies.

• If both players randomize uniformly in Rock-Paper-Scissors, then neither player can increase their expected payoff via a unilateral deviation. every

• A pair of probability distributions (mixed-strategy) with this property is a

- unilateral deviation yields zero expected payoff to the deviator.
- Nash equilibrium.

Nash's Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

	Rock	Paper	Scisso
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	1,-1	1,-1	0,0

• Idea (by von Neumann) is to allow randomized (a.k.a. mixed) strategies.

• If both players randomize uniformly in Rock-Paper-Scissors, then neither player can increase their expected payoff via a unilateral deviation. every

• A pair of probability distributions (mixed-strategy) with this property is a

Nash's Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

Nash's Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

players.

Nash's Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

• Nash's theorem holds more generally in games with any finite number of
- players.
- If a bimatrix game is zero-sum (like in Rock-Paper-Scissors) then a Nash equilibrium can be computed in polynomial time.

Nash's Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

• Nash's theorem holds more generally in games with any finite number of

- players.
- equilibrium can be computed in polynomial time.
 - Using linear programming

Nash's Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

• Nash's theorem holds more generally in games with any finite number of

• If a bimatrix game is zero-sum (like in Rock-Paper-Scissors) then a Nash

- players.
- If a bimatrix game is zero-sum (like in Rock-Paper-Scissors) then a Nash equilibrium can be computed in polynomial time.
 - Using linear programming
- (unless NP = coNP))

Nash's Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

• Nash's theorem holds more generally in games with any finite number of

• General games - Computing Nash Equilibrium is PPAD-Hard (not NP -hard

- players.
- If a bimatrix game is zero-sum (like in Rock-Paper-Scissors) then a Nash equilibrium can be computed in polynomial time.
 - Using linear programming
- (unless NP = coNP))
 - 2NASH is NP-Complete

Nash's Theorem (1951): Every bimatrix game has a Pure Nash Equilibrium

• Nash's theorem holds more generally in games with any finite number of

• General games - Computing Nash Equilibrium is PPAD-Hard (not NP -hard

Computing Equilibrium

- Nash equilibria is a fundamental computational problem of "intermediate" difficulty.
 - Like Graph Isomorphism, Factoring...
- If all parties are boundedly rational, then an equilibrium can be interpreted as a credible prediction only if it can be computed with reasonable effort.
 - "Easier" equilibrium concepts: correlated equilibria and coarse correlated equilibria

• Prove that RPS has <u>unique</u> Nash Equilibria.

Exercise 1